Solutions: Session 8

Exercise 1:
Answers:

a) Inthe system composed of a temperature-sensitive gage, the bridge voltage uo and

the sensitivity S are:
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It is worthwhile to note that to find the above expression, we have used the fact that
Ke < 1. Indeed, typical values of temperature-induced strain close to room
temperature (300 Kelvin) are of the order of 0.0001 (or 100 microstrain), and using
the given expression for K, we obtain K& ~ 0.004).

Now, to find an expression for sensitivity as a function of temperature, we consider:
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Which, for small changes in temperature, AT, yields:
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b) The thermistor is added to compensate the system’s temperature dependence (it is
important to understand that the thermistor will compensate the variation of the

entire bridge, not only the arm with the gage!)

When the thermistor R: is added, the input voltage of the bridge becomes uio,
written as follows (refer to figure below) at constant room temperature:
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Where R, = (RPBRIR)IZR — * e R (since Ke < 1, as explained in part (a)).

Thus, for the remainder of this part, we shall replace R, by R.



Thus, we obtain:
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Comparing with the expression for sensitivity obtained in part (a), the new
sensitivity is given by:
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Consider a change dS in this sensitivity when the temperature changes by dT. This
may be written as follows:
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Let the temperature coefficient of the thermistor be given by a; = Ri.%. Putting
t

the expression for K in the above equation and simplifying, we obtain:
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Where = 0.005.

Now, proper temperature compensation implies that there should be no relative
. e . . ds . -
change in sensitivity with change in temperature, or <= 0. For this condition to

hold, we require that:
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Exercise 2:

Answers:
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External diameter of catheter! = 6 F, or equivalently, 2 mm

a) Inthis scenario, the catheter has not been pinched yet, so Rp and Lp are absent. Thus, the
transfer function (U, /U;) can be written as:
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Now, the transfer function for a general damped second-order system is given by:
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We see that our transfer function is of the same form as the one shown above. Comparing
both transfer functions, we obtain the following expressions for the natural frequency and
damping ratio for the un-pinched catheter system:
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b) Itis given that the pinch reduces the diameter of the catheter by 75%. Thus, the radius of the
pinched section is:

1, =0.25r

Let the length of the pinch be denoted by [, and the viscosity of water by 1. Then, the
lumped-model equivalent resistances Rp and R of the pinched and non-pinched portions of
the catheter can be respectively calculated from the expression for Poiseuille flow in a
cylindrical tube as follows:
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1 The units ‘F refer to the French size or the French gauge system for measuring catheter sizes. The French size = 3 times the diameter in
millimetres. More information can be found here: https://en.wikipedia.org/wiki/French_catheter_scale
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The lumped-model equivalent inductances of the pinched and un-pinched portions of the
catheter, Lp and L. respectively, can be calculated as the mass of water contained in that
portion of the tube divided by the cross-sectional area in that section. This is done as follows:
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The compliance of the sensor diaphragm is given as follows:
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And, the damping ratio &p in the pinched condition is given by:
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Inserting values, we obtain:
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Solving the above quadratic equation and retaining the positive result (and rejecting the

negative one):
[,=0.16m

c) Now, we know from the general form of a second-order system equation, that the natural

undamped frequency, w,, is given by 1/,/LcoC4, Where L is the catheter inductance and Cy
is the sensor diaphragm compliance. We now calculate this natural undamped frequency for
a pinched and un-pinched catheter as shown below.
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Without pinch:
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Thus, the natural frequency decreases from 91 Hz (without pinch) to 49 Hz (with pinch). As
a side-remark, we note that &, the damping ratio in the absence of a pinch, is 0.033. Thus,
pinching the catheter increases its damping ratio (from 0.033 to 0.4).
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d) Asseen during the course on slide 41 in Chapter Resistive Sensors, as more harmonics (for the purpose of

this discussion, we consider the natural frequency as the first harmonic, twice the natural
frequency as the second harmonic, and so on) are added, the synthesized waveform
resembles the original signal more closely. We see (in the same slide) that even after the
addition of the first 6 harmonics, there is still some noticeable difference between the
synthesized waveform b and the original signal a. Thus, the accuracy of measuring a signal, in
this case the arterial blood pressure, highly depends on the number of harmonics that can be
captured by the measuring system.

From the plot provided above, we observe that the pinched catheter system has a lower
cutoff frequency of 49 Hz (compared to 91 Hz for the un-pinched catheter system). For
humans, we will be able to capture 14 harmonics (calculated as 49 Hz/3.3 Hz), and for dogs,
we will be able to capture 9 (calculated as 49 Hz/5 Hz). This is a sufficient number to capture
the high-frequency details of the respective signals. However, for mice, we will only be able
to capture 2 harmonics (49 Hz/22 Hz), and the pinched catheter will significantly distort this
signal. Even with the un-pinched catheter, we will only be able to capture 4 harmonics (91
Hz/22 Hz), and even this signal might be distorted.



