
Solutions: Session 8 

Exercise 1: 

Answers: 

a) In the system composed of a temperature-sensitive gage, the bridge voltage u0  and
the sensitivity S are:
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It is worthwhile to note that to find the above expression, we have used the fact that 
𝐾𝐾𝜀𝜀 ≪ 1. Indeed, typical values of temperature-induced strain close to room 
temperature (300 Kelvin) are of the order of 0.0001 (or 100 microstrain), and using 
the given expression for 𝐾𝐾, we obtain 𝐾𝐾𝜀𝜀 ~ 0.004). 

Now, to find an expression for sensitivity as a function of temperature, we consider: 
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b) The thermistor is added to compensate the system’s temperature dependence (it is
important to understand that the thermistor will compensate the variation of the
entire bridge, not only the arm with the gage!)

When the thermistor Rt is added, the input voltage of the bridge becomes uio,

written as follows (refer to figure below) at constant room temperature:
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≈ 𝑅𝑅 (since 𝐾𝐾𝜀𝜀 ≪ 1, as explained in part (a)). 

Thus, for the remainder of this part, we shall replace 𝑹𝑹𝒆𝒆𝒆𝒆 by 𝑹𝑹. 
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Thus, we obtain: 
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Comparing with the expression for sensitivity obtained in part (a), the new 
sensitivity is given by: 
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Consider a change 𝑑𝑑𝑑𝑑 in this sensitivity when the temperature changes by 𝑑𝑑𝑑𝑑. This 
may be written as follows: 
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Let the temperature coefficient of the thermistor be given by 𝛼𝛼𝑡𝑡 = 1
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the expression for 𝐾𝐾 in the above equation and simplifying, we obtain: 
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Where 𝛽𝛽 = 0.005. 

Now, proper temperature compensation implies that there should be no relative 
change in sensitivity with change in temperature, or 𝑑𝑑𝑑𝑑
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Exercise 2: 

Answers: 

             

External diameter of catheter1 = 6 F, or equivalently, 2 mm 

 

a) In this scenario, the catheter has not been pinched yet, so 𝑅𝑅𝑃𝑃 and 𝐿𝐿𝑃𝑃 are absent. Thus, the 
transfer function (𝑈𝑈𝑜𝑜/𝑈𝑈𝑖𝑖) can be written as: 

𝑈𝑈𝑜𝑜
𝑈𝑈𝑖𝑖
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Now, the transfer function for a general damped second-order system is given by: 
 

𝐻𝐻 =
𝐾𝐾

�𝑗𝑗𝑗𝑗𝜔𝜔𝑛𝑛
�
2

+ �2𝜉𝜉𝜉𝜉𝜉𝜉
𝜔𝜔𝑛𝑛

� + 1
 

 
We see that our transfer function is of the same form as the one shown above. Comparing 
both transfer functions, we obtain the following expressions for the natural frequency and 
damping ratio for the un-pinched catheter system: 

𝜔𝜔𝑛𝑛(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) =
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b) It is given that the pinch reduces the diameter of the catheter by 75%. Thus, the radius of the 

pinched section is: 

𝑟𝑟𝑃𝑃 = 0.25 𝑟𝑟 

Let the length of the pinch be denoted by 𝑙𝑙𝑃𝑃 and the viscosity of water by 𝜂𝜂. Then, the 
lumped-model equivalent resistances 𝑅𝑅𝑃𝑃 and 𝑅𝑅𝐶𝐶  of the pinched and non-pinched portions of 
the catheter can be respectively calculated from the expression for Poiseuille flow in a 
cylindrical tube as follows: 

 

𝑅𝑅𝑃𝑃 =
8𝜂𝜂𝑙𝑙𝑃𝑃
𝜋𝜋𝑟𝑟𝑃𝑃4

=
8 ∗ 0.001 ∗ 𝑙𝑙𝑃𝑃

𝜋𝜋(0.46 ∗ 10−3 ∗ 0.25)4 = 1456 ∗ 1010 ∗ 𝑙𝑙𝑃𝑃 

                                                           
1 The units ‘F’ refer to the French size or the French gauge system for measuring catheter sizes. The French size = 3 times the diameter in 
millimetres. More information can be found here: https://en.wikipedia.org/wiki/French_catheter_scale 



 

𝑅𝑅𝐶𝐶 =
8𝜂𝜂(𝑙𝑙 − 𝑙𝑙𝑃𝑃)

𝜋𝜋𝑟𝑟4
= 8 ∗ 0.001 ∗

𝑙𝑙 − 𝑙𝑙𝑃𝑃
𝜋𝜋(0.46 ∗ 10−3)4 = 5.69 ∗ 1010 ∗ (1 − 𝑙𝑙𝑃𝑃) 

The lumped-model equivalent inductances of the pinched and un-pinched portions of the 
catheter, 𝐿𝐿𝑃𝑃 and 𝐿𝐿𝐶𝐶  respectively, can be calculated as the mass of water contained in that 
portion of the tube divided by the cross-sectional area in that section. This is done as follows: 

 

𝐿𝐿𝑃𝑃 =
𝑚𝑚𝑃𝑃
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(𝜋𝜋𝑟𝑟𝑃𝑃2)2
=
𝜌𝜌𝑙𝑙𝑃𝑃
𝜋𝜋𝑟𝑟𝑃𝑃2

=
103𝑙𝑙𝑃𝑃

𝜋𝜋(0.46 ∗ 10−3 ∗ 0.25)2 = 24 ∗ 109 ∗ 𝑙𝑙𝑃𝑃 

 

𝐿𝐿𝐶𝐶 =
𝜌𝜌(𝑙𝑙 − 𝑙𝑙𝑃𝑃)
𝜋𝜋𝑟𝑟2

=
103(𝑙𝑙 − 𝑙𝑙𝑃𝑃)

𝜋𝜋(0.46 ∗ 10−3)2 = 1.5 ∗ 109 ∗ (1 − 𝑙𝑙𝑃𝑃) 

The compliance of the sensor diaphragm is given as follows: 
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And, the damping ratio 𝜉𝜉𝑃𝑃 in the pinched condition is given by: 
 

𝜉𝜉𝑃𝑃 =
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Inserting values, we obtain: 
 

𝜉𝜉𝑃𝑃 = 0.4 =
5.69 ∗ 1010 + 1450 ∗ 1010 ∗ 𝑙𝑙𝑃𝑃
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1.5 ∗ 109 + 22.5 ∗ 109 ∗ 𝑙𝑙𝑃𝑃

 

Solving the above quadratic equation and retaining the positive result (and rejecting the 
negative one): 

𝒍𝒍𝒑𝒑 = 𝟎𝟎. 𝟏𝟏𝟏𝟏 𝐦𝐦 
 

c) Now, we know from the general form of a second-order system equation, that the natural 
undamped frequency, 𝜔𝜔𝑛𝑛 is given by 1/�𝐿𝐿𝐶𝐶0𝐶𝐶𝑑𝑑, where 𝐿𝐿𝐶𝐶0 is the catheter inductance and 𝐶𝐶𝑑𝑑 
is the sensor diaphragm compliance. We now calculate this natural undamped frequency for 
a pinched and un-pinched catheter as shown below. 
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Without pinch: 
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=
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1.5 × 109
= 91 𝐻𝐻𝐻𝐻 

Thus, the natural frequency decreases from 91 Hz (without pinch) to 49 Hz (with pinch). As 
a side-remark, we note that 𝜉𝜉0, the damping ratio in the absence of a pinch, is 0.033. Thus, 
pinching the catheter increases its damping ratio (from 0.033 to 0.4). 

d) As seen during the course on slide 41 in Chapter Resistive Sensors, as more harmonics (for the purpose of
this discussion, we consider the natural frequency as the first harmonic, twice the natural
frequency as the second harmonic, and so on) are added, the synthesized waveform
resembles the original signal more closely. We see (in the same slide) that even after the
addition of the first 6 harmonics, there is still some noticeable difference between the
synthesized waveform 𝑏𝑏 and the original signal 𝑎𝑎. Thus, the accuracy of measuring a signal, in
this case the arterial blood pressure, highly depends on the number of harmonics that can be
captured by the measuring system.

From the plot provided above, we observe that the pinched catheter system has a lower
cutoff frequency of 49 Hz (compared to 91 Hz for the un-pinched catheter system). For
humans, we will be able to capture 14 harmonics (calculated as 49 Hz/3.3 Hz), and for dogs,
we will be able to capture 9 (calculated as 49 Hz/5 Hz). This is a sufficient number to capture
the high-frequency details of the respective signals. However, for mice, we will only be able
to capture 2 harmonics (49 Hz/22 Hz), and the pinched catheter will significantly distort this
signal. Even with the un-pinched catheter, we will only be able to capture 4 harmonics (91
Hz/22 Hz), and even this signal might be distorted.


